Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of piezoelectricity in amino acids by supramolecular packing

Abstract

Piezoelectricity, the linear relationship between stress and induced electrical charge, has attracted recent interest due to its manifestation in biological molecules such as synthetic polypeptides or amino acid crystals, including gamma (γ) glycine. It has also been demonstrated in bone, collagen, elastin and the synthetic bone mineral hydroxyapatite. Piezoelectric coefficients exhibited by these biological materials are generally low, typically in the range of 0.1–10 pm V−1, limiting technological applications. Guided by quantum mechanical calculations we have measured a high shear piezoelectricity (178 pm V−1) in the amino acid crystal beta (β) glycine, which is of similar magnitude to barium titanate or lead zirconate titanate. Our calculations show that the high piezoelectric coefficients originate from an efficient packing of the molecules along certain crystallographic planes and directions. The highest predicted piezoelectric voltage constant for β-glycine crystals is 8 V mN−1, which is an order of magnitude larger than the voltage generated by any currently used ceramic or polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular packing directs piezoelectric response in glycine amino acid crystals.
Figure 2: From simulation to experimental verification.
Figure 3: Controlling polymorphic transitions in glycine crystals.
Figure 4: Simple energy harvesting method using γ-glycine crystals.

Similar content being viewed by others

References

  1. Fukada, E. & Yasuda, I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn 12, 1158–1162 (1957).

    Google Scholar 

  2. Fukada, E. & Yasuda, I. Piezoelectric effects in collagen. Jpn. J. Appl. Phys. 3, 117–121 (1964).

    CAS  Google Scholar 

  3. Liu, Y. et al. Ferroelectric switching of elastin. Proc. Natl Acad. Sci. USA 111, E2780–E2786 (2014).

    CAS  Google Scholar 

  4. Gandhi, A. A., Wojtas, M., Lang, S., Kholkin, A. L. & Tofail, S. A. Piezoelectricity in poled hydroxyapatite ceramics. J. Am. Ceram. Soc. 97, 2867–2872 (2014).

    CAS  Google Scholar 

  5. Lee, B. Y. et al. Virus-based piezoelectric energy generation. Nat. Nanotech. 7, 351–356 (2012).

    CAS  Google Scholar 

  6. Ikeda, T. Fundamentals of Piezoelectricity (Oxford Univ. Press, 1996).

    Google Scholar 

  7. Zhou, Z., Qian, D. & Minary-Jolandan, M. Molecular mechanism of polarization and piezoelectric effect in super-twisted collagen. ACS Biomater. Sci. Eng. 2, 929–936 (2016).

    CAS  Google Scholar 

  8. Ando, Y. & Fukada, E. Piezoelectric properties of oriented deoxyribonucleate films. J. Polym. Sci. Polym. Phys. Ed. 14, 63–79 (1976).

    CAS  Google Scholar 

  9. Berlincourt, D. & Jaffe, H. Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys. Rev. 111, 143–148 (1958).

    CAS  Google Scholar 

  10. Fukada, E. History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1277–1290 (2000).

    CAS  Google Scholar 

  11. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).

    CAS  Google Scholar 

  12. Chen, X., Xu, S., Yao, N. & Shi, Y. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137 (2010).

    CAS  Google Scholar 

  13. Janshoff, A., Galla, H. J. & Steinem, C. Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors? Angew. Chem. Int. Ed. 39, 4004–4032 (2000).

    CAS  Google Scholar 

  14. Trolier-McKinstry, S. & Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 12, 7–17 (2004).

    CAS  Google Scholar 

  15. Bu, G. et al. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 84, 4611–4613 (2004).

    CAS  Google Scholar 

  16. Bhushan, B. & Marti, O. Scanning Probe Microscopy–Principle of Operation, Instrumentation, and Probes (Springer, 2010).

    Google Scholar 

  17. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    CAS  Google Scholar 

  18. Mason, W. P. Physical Acoustics: Principles and Methods (Academic, 1964).

    Google Scholar 

  19. Lemanov, V. Piezoelectric and pyroelectric properties of protein amino acids as basic materials of soft state physics. Ferroelectrics 238, 211–218 (2000).

    Google Scholar 

  20. Lemanov, V., Popov, S. & Pankova, G. Piezoelectricity in protein amino acids. Phys. Solid State 53, 1191–1193 (2011).

    CAS  Google Scholar 

  21. Albrecht, G. & Corey, R. B. The crystal structure of glycine. J. Am. Chem. Soc. 61, 1087–1103 (1939).

    CAS  Google Scholar 

  22. Iitaka, Y. Crystal structure of [beta]-glycine. Nature 183, 390–391 (1959).

    CAS  Google Scholar 

  23. Iitaka, Y. The crystal structure of γ-glycine. Acta Crystallogr. 11, 225–226 (1958).

    CAS  Google Scholar 

  24. Dawson, A. et al. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 5, 1415–1427 (2005).

    CAS  Google Scholar 

  25. Meirzadeh, E. et al. Origin and structure of polar domains in doped molecular crystals. Nat. Commun. 7, 13351 (2016).

    CAS  Google Scholar 

  26. Heredia, A. et al. Nanoscale ferroelectricity in crystalline γ-glycine. Adv. Funct. Mater. 22, 2996–3003 (2012).

    CAS  Google Scholar 

  27. Kumar, R. A., Vizhi, R. E., Vijayan, N. & Babu, D. R. Structural, dielectric and piezoelectric properties of nonlinear optical γ-glycine single crystals. Phys. B: Condens. Matter 406, 2594–2600 (2011).

    Google Scholar 

  28. Balke, N., Bdikin, I., Kalinin, S. V. & Kholkin, A. L. Electromechanical imaging and spectroscopy of ferroelectric and piezoelectric materials: state of the art and prospects for the future. J. Am. Ceram. Soc. 92, 1629–1647 (2009).

    CAS  Google Scholar 

  29. Nguyen, V., Zhu, R., Jenkins, K. & Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 13566 (2016).

    CAS  Google Scholar 

  30. Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, 1985).

    Google Scholar 

  31. Mori, K., Sakaguchi, Y., Iketsu, Y. & Suzuki, J. Full-color passive-matrix organic EL displays. Displays 22, 43–47 (2001).

    CAS  Google Scholar 

  32. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  Google Scholar 

  33. Nam, Y. S. et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nanotech. 5, 340–344 (2010).

    CAS  Google Scholar 

  34. Tulip, P. & Clark, S. Lattice dynamical and dielectric properties of L-amino acids. Phys. Rev. B 74, 064301 (2006).

    Google Scholar 

  35. Tichý, J., Erhart, J. R., Kittinger, E. & Prívratská, J. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials (Springer, 2010).

    Google Scholar 

  36. Kobiakov, I. Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Commun. 35, 305–310 (1980).

    Google Scholar 

  37. Goes, J., Figueiro, S., De Paiva, J. & Sombra, A. Piezoelectric and dielectric properties of collagen films. Phys. Status Solidi (a) 176, 1077–1083 (1999).

    CAS  Google Scholar 

  38. Ueberschlag, P. PVDF piezoelectric polymer. Sensor Rev. 21, 118–126 (2001).

    Google Scholar 

  39. Murayama, N., Nakamura, K., Obara, H. & Segawa, M. The strong piezoelectricity in polyvinylidene fluroide (PVDF). Ultrasonics 14, 15–24 (1976).

    CAS  Google Scholar 

  40. Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    CAS  Google Scholar 

  41. Jaffe, B. Piezoelectric Ceramics Vol. 3 (Elsevier, 2012).

    Google Scholar 

  42. Shrout, T. R. & Zhang, S. J. Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007).

    Google Scholar 

  43. Yu, F. et al. High-performance, high-temperature piezoelectric BiB3O6 crystals. J. Mater. Chem. C 3, 329–338 (2015).

    CAS  Google Scholar 

  44. Weissbuch, I., Torbeev, V. Y., Leiserowitz, L. & Lahav, M. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. Int. Ed. 44, 3226–3229 (2005).

    CAS  Google Scholar 

  45. Ferrari, E. S., Davey, R. J., Cross, W. I., Gillon, A. L. & Towler, C. S. Crystallization in polymorphic systems: the solution-mediated transformation of β to α glycine. Cryst. Growth Des. 3, 53–60 (2003).

    CAS  Google Scholar 

  46. Isakov, D. et al. In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals. Cryst. Growth Des. 14, 4138–4142 (2014).

    CAS  Google Scholar 

  47. Seyedhosseini, E. et al. Growth and nonlinear optical properties of β-glycine crystals grown on Pt substrates. Cryst. Growth Des. 14, 2831–2837 (2014).

    CAS  Google Scholar 

  48. Lee, I. S., Kim, K. T., Lee, A. Y. & Myerson, A. S. Concomitant crystallization of glycine on patterned substrates: the effect of pH on the polymorphic outcome. Cryst. Growth Des. 8, 108–113 (2008).

    CAS  Google Scholar 

  49. Surovtsev, N., Malinovsky, V. & Boldyreva, E. Raman study of low-frequency modes in three glycine polymorphs. J. Chem. Phys. 134, 045102 (2011).

    CAS  Google Scholar 

  50. You, Y.-M. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017).

    CAS  Google Scholar 

  51. Ohigashi, H. Electromechanical properties of polarized polyvinylidene fluoride films as studied by the piezoelectric resonance method. J. Appl. Phys. 47, 949–955 (1976).

    CAS  Google Scholar 

  52. Boese, A. D. & Sauer, J. Embedded and DFT calculations on the crystal structures of small alkanes, notably propane. Cryst. Growth Des. 17, 1636–1646 (2017).

    CAS  Google Scholar 

  53. Fernandez-Yague, M. A. et al. Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies. Adv. Drug Deliv. Rev. 84, 1–29 (2015).

    CAS  Google Scholar 

  54. Azuri, I. et al. Unusually large Young’s moduli of amino acid molecular crystals. Angew. Chem. Int. Ed. 54, 13566–13570 (2015).

    CAS  Google Scholar 

  55. Cockayne, E. & Burton, B. P. Phonons and static dielectric constant in CaTiO3 from first principles. Phys. Rev. B 62, 3735–3743 (2000).

    CAS  Google Scholar 

  56. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  57. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  58. Tulip, P. & Clark, S. Dielectric and vibrational properties of amino acids. J. Chem. Phys. 121, 5201–5210 (2004).

    CAS  Google Scholar 

  59. Wu, X., Vanderbilt, D. & Hamann, D. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005).

    Google Scholar 

  60. Bhat, M. N. & Dharmaprakash, S. Growth of nonlinear optical γ-glycine crystals. J. Cryst. Growth 236, 376–380 (2002).

    CAS  Google Scholar 

  61. Cain, M. G. & Stewart, M. Characterisation of Ferroelectric Bulk Materials and Thin Films 267–275 (Springer, 2014).

    Google Scholar 

Download references

Acknowledgements

The authors thank E. O’Connell, A. Stewart and U. Bangert for use of their optical microscope. This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under Grant Number 13/RC/2073. D.T. acknowledges support from SFI under Grant Number 15/CDA/3491, and for provision of computing resources at the SFI/Higher Education Authority Irish Center for High-End Computing (ICHEC). A.L.K. acknowledges support from CICECO—Aveiro Institute of Materials (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. Funding from the Irish Research Council EMBARK Postgraduate Scholarship (RS/2012/337) to A.S. is acknowledged. S.A.M.T. acknowledges Enterprise Ireland and Erasmus for their long-standing support and funding.

Author information

Authors and Affiliations

Authors

Contributions

S.G. performed the computer simulations. S.G. and A.S. performed piezoelectric experiments. S.G. and D.C. determined crystallographic orientations and the magnitude of polarization in glycine polymorphs. S.G. grew glycine crystals in collaboration with M.R.N., T.S. and A.L.K. R.M. performed Raman characterization and mapping. M.G. performed XRD analysis under supervision of N.L. and C.S. C.M. performed SEM characterization under supervision of F.M.F.R. S.A.M.T. and D.T. designed and supervised the project. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Syed A. M. Tofail or Damien Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerin, S., Stapleton, A., Chovan, D. et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018). https://doi.org/10.1038/nmat5045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat5045

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research